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ABSTRACT 

 

Introduction: Precise programmed quantitative Cephalometry is fundamental for 

orthodontics. However, manual labelling of cephalometric landmarks is tedious and subjective, 

which the clinician must perform. In recent years, deep learning has gained attention for its 

success in the computer vision field. It has achieved enormous progress in resolving image 

classification or image segmentation.  

Aim: This paper proposes a two-step method that automatically detects cephalometric 

landmarks on the X-ray images and compares these values with the manual annotation method.  

Methodology: Initially a patch or area from the region of interest pertaining to each landmark 

is extracted from the Cephalometric image by registering the testing image to training image 

with annotated landmarks. Then, we utilize pre-trained networks with a backbone of 

EfficientNetB7, which is the best in the class Convolutional Neural Network, to detect each 

landmark in each ROI patch. The Network directly detects the coordinates of the landmarks. 

The method was assessed on two datasets: 1) ISBI 2015 Grand Challenge in Dental X-ray 

Image Analysis, 2) Dataset created in association with St Gregorios Dental College.  

Result: The EfficientNetB7 obtains detection accuracies similar to the manual annotation 

method in the R2 Score.  

Conclusion: The new method outperformed other benchmarks’ results of previous models, 

which proves that the proposed method is effective for cephalometric landmark detection. The 

proposed method could be used for landmark detection in clinical practice under the 

supervision of clinicians. 

Keywords: Dental X-ray images, Cephalometric landmarks, Convolutional Neural Networks, 

Deep learning, EfficientNetB7. 
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INTRODUCTION 

 

One of the significant goals of Orthodontics is to resolve craniofacial discrepancies and to 

establish functional and esthetic demands. Orthodontists have adopted cephalometric 

measurement to assess the deviated skeletal parameters. Since it was introduced into 

orthodontics during the 1930s.  

Cephalometry had its beginnings in craniometry. Craniometry is defined in the Edinburgh 

encyclopedia of 1813 as “the art of measuring skulls of animals to discover their specific 

differences.” For many years anatomists and anthropologists were confined to measuring 

craniofacial dimensions using the skull of long-dead individuals. Although precise 

measurements were possible, Craniometry had limitations for growth studies. Cephalometry is 

concerned with the measurement of hard and soft tissues. However, this procedure had its 

limitations due to the inaccuracies that resulted from measuring the skull through the varying 

thickness of soft tissues. With the discovery of X-rays by Roentgen in 1895, radiographic 

Cephalometry came into being. It is defined as the cranial measurements from the hard and soft 

tissue landmarks on the radiographic image (Krogman & Sassouni 1957). This approach 

combines the advantages of Craniometry and anthropometry. The disadvantage is that it 

produces a two-dimensional image of a three-dimensional structure. 

Cephalometric radiographs are widely used in orthodontics, orthopaedics, and maxillofacial 

surgery to assess and predict craniofacial growth, plan treatment and evaluate treatment effects. 

Cephalometric analysis is widely considered a critical diagnostic tool in determining the 

treatment outcome. (1) 

A detailed analysis should be done using a high-resolution two-dimensional x-ray image of 

the head taken from the side called Lateral Cephalogram to achieve these goals. 

Cephalometric analysis is done using a group of approved points named craniofacial 

landmarks. In orthodontics, there are around 90 landmarks, of which 30 are commonly used. 

The position of the landmarks is decided by a group of predetermined geometrical shapes, 

lines, intersections, and exterior boundaries. 

Once the landmarks are located, the measurement and analysis of various angular and linear 

parameters can be performed. Measurements obtained based on the landmarks provide 



supportive information for the operator to determine the optimal treatment plan. The more 

information collected, the better will be the treatment outcome. (2) 

In the manual landmarking method, Orthodontists usually trace out the craniofacial contours 

first on the X-ray images and then extract the landmarks from corners, line intersections, and 

other geometrical line and shapes. This process is tedious and requires much time. The 

fatigue level of the clinician will invariably influence the accuracy of the values. Moreover, 

high intrapersonal and interpersonal variations of landmark tracing are other problems that 

can lead to errors in orthodontic problem diagnosis and consequently the treatment planning 

and decision making. (3) Therefore, a stable and consistently automated end-to-end analytic 

method is required for precise evaluation if Cephalograms. 

In the current scenario, the manual landmarking technique is time-consuming, and the fatigue 

level of the clinician will invariably triger intra-observer errors. The computer-assisted 

cephalometric analysis has certain shortcomings. The calibration and identification of 

landmarks got to be done manually. Auto-identification of anatomical landmarks is complex 

and poorly explored due to the complexity and variability of cephalometric images. 

Challenges in auto-identifying anatomical landmarks of cephalometric images include 

variations on individual skeletal structures, the image blurs caused by projection 

magnifications and, image complexity due to the overlapping contralateral structures. 

Many types of research are underway to digitalize the cephalometric analysis, as their 

accuracy remains an issue compared to the manual gold standard method. The dataset 

available for the deep learning method is another limitation. 

There have been various studies for lateral cephalometric analysis. In particular, the 

International Symposium on Biomedical Imaging (ISBI) held in 2014 and 2015 challenged 

this problem and several approaches were published(4,5). Ibragimov et al. used Haar-like 

features to express the landmark’s intensity and linked it to a point detector using a random 

forest; the landmark is found by using random forest regression(6). In the second stage, the 

landmark is modified by a sparse shape composition model. The Model of Chen et al. learned 

the visual characteristics of the image patches and the distance from the landmarks and made 

a prediction model by voting the landmarks obtained from each patch(7). Vandaele et al. 

solved this problem with each of the 19 landmarks binary classification problems(8). They 

used highly randomized trees as pixel classifiers. Despite the wide variety of studies, no 

accurate model has yet been developed for use in clinics with less than 2mm(4). 



A fully automated cephalometric landmark detection software enables us to do accurate 

calculations in minimum time. The software evaluated during this study uses Artificial 

Intelligence technology (Deep learning) to execute the cephalometric analysis. Thanks to its 

deep brain algorithm, it simplifies and fastens the landmark identification process. The 

software improves after every analysis performed, thereby acquiring perfection over time. In 

recent years, deep learning has outperformed existing algorithms in various areas. Especially 

since the AlexNet in ILSVRC in 2012 (9), Convolutional Neural Network (CNN) has been 

developed rapidly in image processing. CNN is a multi-layered perceptron model inspired by 

animal visual systems (10). The color images given as input to the image processing problem 

are represented in a three-dimensional array inside the computer. For high-resolution images, 

one image is represented by many numbers. CNN has the characteristics of local connections 

and shared variables. This property allows spatial properties from images with few 

parameters. Therefore, CNN enables us to get specific information efficiently from images. 

CNN has been widely applied to medical imaging (11), image segmentation (12,13), 

object/lesion detection (14,15), image/exam classification (16), and registration. Some papers 

find landmarks in medical images. Payer et al. used CNN to find multiple landmark points. 

They first defined the location of the landmark as a heatmap using Gaussian (17). Then, the 

landmark was estimated in the learning process by learning the heatmap from the input 

image. Arik et al. solved the problem of cephalometric landmarks detection using CNN. 

Their idea is to find intensity appearance patterns for each landmark (18). This method 

showed that the CNN-based method is better than the random forest-based methods. 

This study builds and evaluates a State-of-the-Art Artificial Intelligence(AI) -based landmark 

detection Convolutional Neural Network (CNN) model software, The proposed Model’s 

performance is tested and compared with the manual landmark annotation method. Six hundred 

publicly available images and well-defined landmarks were used for the study. 

 

 

 

 

 

 



RELEVANCE OF THE RESEARCH 

 

The landmark detection is done manually by the clinician currently. This method has many 

variables, which can affect the accuracy of the analysis. These problems suggest the 

requirement of an accurate and predictable system for landmark detection in cephalometric 

analysis. 

The CNN model used in this study is more efficient than the currently available architectures, 

which use less time for processing and reduce the amount of dataset required for precisely 

detecting the Cephalometric landmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AIM OF THE STUDY 

 

To evaluate the accuracy of a novel Fully Automated Cephalometric Landmark Detection 

Software compared to the manual landmark annotation method. 

 

OBJECTIVES OF THE STUDY 

 

1. To annotate the 19 anatomical landmarks on 600 Cephalograms manually by two 

orthodontists having a minimum clinical experience of 10 years. 

2. To test the cephalometric landmark detection software model using the same Lateral 

Cephalograms that are manually annotated. 

3. To compare the landmarks obtained by the software and the landmarks annotated 

manually. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BACKGROUND AND REVIEW OF LITERATURE 

 

Cephalometry: 

The name cephalometry is the morphological study of all the structures present in the head. 

This age, race, and sex are valuable for diagnosis, treatment monitoring and predicting 

orthodontic treatment results. 

Broadbent(19) and later Brodie(20) applied a method based on landmarks to quantify 

malocclusions. Landmarks were defined using cephalometric radiographs, where some bony 

or soft tissue structures had to be identified. The power of this approach comes when standard 

values are known for a specified measurement of an individual at known age, race, and sex, So 

that differences can be quantified and used for diagnosis. 

Downs(21) in 1948 introduced the first cephalometric analysis method. He selected ten angular 

measurements on Lateral Cephalograms from a group of selected individuals, taking average 

values, giving them clinical relevance. Downs analysis has been the basis for most methods 

used at present, such as Steiner’s and Rickett’s (22) methods. 

To identify cephalometric landmarks on a particular patient, lateral head radiographs are taken. 

Lately, some work has been carried out to study potential advantages of 3D imaging methods, 

such as computed tomography for analysis, and concluded that 3D landmarking present a 

benefit only on patients with severe asymmetric craniofacial syndrome. No substantial benefits 

are obtained that compensate for the high costs and problems of 3D imaging methods in clinical 

routine, The conventional radiographs and few analysis still remains the gold standard for 

imaging analysis in Orthodontic analysis. 

The automation of lateral cephalogram for landmark detection was started late back in the 

1980s; the first step towards an automated extraction of these points was presented in work by 

Levy-Mandel A D (1986) by a knowledge-based technique with edge tracking. This technique 

uses a global line following /line extracting technique to locate all the existing lines and edges 

of an image and then uses a knowledge base to select the relevant landmarks. (23) Later, in 

1989, Parthasarathy et al. created an algorithm that uses digital image processing and feature 

recognition techniques to detect 27 different landmarks in the lateral Cephalogram. (24) 

Forsyth D B et al. (1996) compared the diagnostic quality of conventional cephalometric with 

that of digital image counterparts. In this, they suggested that, for digital imaging of 



cephalometric radiographs, a pixel matrix larger than 512x512 with more than 64 Gray levels 

is required to maintain the diagnostic quality of the original radiograph. (25) 

B Trpkova (1997) done a meta analysis. According to this investigation, for the landmark 

detection, they recommend that 0.59 mm of total error for the X coordinate and 0.56 mm for 

the Y coordinate are acceptable levels of accuracy. (26) 

Rudolph D J et al. (1998) shows a model-based approach for automated computer 

identification of landmarks using Spatial spectroscopy (SS) is a computerized method that 

identifies image structure based on a convolution of the image with a set of filters followed by 

a decision method using statistical pattern recognition technique concludes that SS shows 

potential for the automatic detection of landmarks. (27) 

Jia-Kuang Liu (2000) evaluated the accuracy of a computerized automatic landmark 

identification system that used an edge-based technique. They divided the image into eight 

rectangular sub-image regions, reduced resolutions of the sub-image, and performed the 

landmark detection. Only selected landmarks show a comparable result with the manual 

method. (28) 

Hutton T J et al. in 2000 evaluated active shape models (ASM) to cephalometric landmarking. 

The study showed that the tools could be used as a time-saving tool to provide a first-estimate 

location of the landmarks. The method provided a framework for a range of future 

improvements. (29) 

Grau V et al. (2001) utilized a pattern-matching technique; Landmark detection is carried out 

in two steps: a line detection module searches for significant, well-contrasted lines of the 

image, such as the jawline or the nasal spine. The landmark detection module uses the lines in 

the first module to determine the search areas and then applies a pattern detection algorithm 

based on mathematical morphology techniques. Relations between landmarks and lines are 

determined utilizing a training process. The system has been tested to detect 17 landmarks on 

20 images: more than 90% of the landmarks are accurately identified. (30) 

El-Feghi.I et al. (2003) tried the soft computing pattern-matching method in two steps: 

deriving a smaller expectation window for each landmark using a trained neuro-fuzzy system 

(NFS) then applying a template-matching algorithm to pinpoint the exact location of the 

landmark. The system is trained to locate 20 landmarks on a database of 565 images which 

shows improved results than the previous works. (31) 



Yi-Jane Chen et al. (2004) evaluated the effect of differences in landmarking on traditional 

versus digitalized cephalometry. The results show significant differences but within the 

clinically acceptable level and substantiated the benefits of digital cephalometry in terms of 

reliability on analysis. (32) 

Mohseni and Hadis (2007) used image processing and pattern matching techniques to locate 

the three prominent reference landmarks on each image which are then used to form an affine 

matrix. This matrix is used to estimate the initial location of the other landmarks. The proposed 

method finds proper initial estimations, limits the search regions, and precisely obtains the 

location of landmarks. More than 90% accuracy ensures the efficiency of the proposed method. 

(33) 

Rosalia Leonardi et al. (2008) concluded a Systemic review that the systems described in the 

literature, such as image filtering plus knowledge-based landmark search, model-based 

approaches, soft-computing approaches, and hybrid approaches are not accurate enough to 

allow their use for clinical purposes as errors in landmarking detection were more significant 

than those expected with manual tracing. (34) 

Ibragimov B (2014) proposed a novel framework method using Random forests (RFs) and 

uses the concept of game theory to determine the optimum landmark points. The results 

indicate that the proposed framework can be used for computerized cephalometry. Moreover, 

the framework is universal and can be applied to images of various anatomical structures 

acquired by different modalities. (6) 

Mirzaalian.H.et al. (2014), Random decision forest-based likelihoods model is used using 200 

sample sizes lateral cephalograms for locating 19 landmarks automated, got a success detection 

rate of 65.26%. (35) 

Wang et al. (2015) evaluated the methods submitted for the Automatic Cephalometric X-ray 

landmark detection challenge held at the IEEE International Symposium on Biomedical 

Imaging 2014 with an on-site competition. The experimental results show that three methods 

can achieve detection rates greater than 80% using the 4 mm precision range. However, only 

one method achieves a detection rate greater than 70% using the 2 mm precision range, The 

acceptable precision range in clinical practice. The study provides insights into the performance 

of different landmark detection approaches under real-world conditions and highlights the 

achievements and limitations of current image analysis techniques. (36) 



Linder. et al. (2016), used Modified Fully automated landmark annotation (FALA), which 

follows a machine learning approach using Random Forest regression-voting and Constrained 

local model framework (RFRV-CLM) to locate individual landmarks with 400 sample size 

images. They showed a state-of-the-art result with four-fold cross-validation on all images in 

the dataset with an accuracy of 84.7%. (37) 

Arik. et al. (2017), used a custom deep CNN combined with a shape model for refinement for 

landmark detection of 19 points from the 2D lateral cephalometric image with a sample size of 

400 lateral cephalometric images; the overall framework demonstrates high anatomical 

landmark detection accuracy of 75% and high anatomical type classification accuracy. (18) 

O'Neil. et al. (2018), Custom Fully Conventional Neural Network (FCN) and Atlas Correction 

with a sample size of 22 images. Compared with the Decision Forest model, and outperforms 

that model without additional engineering and attains similar agreement to human observers 

with landmark detection. (38) 

Wang. et al. 2018, used Multiresolution Decision tree Regression Voting created an accuracy 

of 73.37% landmark detection rate within the range of 2.0mm. (36) 

Dai. et al. (2019), Adversarial encoder-decoder networks model is used with Cropping and 

template matching done for data processing got a 35-40% landmark detection rate for each 

landmark. (39) 

Chen. et al. (2019), used Visual Geometric Group (VGG)-19, ResNet20 and inception; 

Custom attentive feature pyramid fusion module with a sample size of 400 lateral 

cephalometric images. In their framework, The AFPF module gets high resolution and 

semantically enhanced fusion feature to improve prediction accuracy. The pixel-wise 

regression-voting technique based on heat maps and offset maps also benefits the performance. 

(40) 

Lee. et al. (2019), Custom CNN for Region of Interest (ROI) and custom Bayesian CNN for 

landmark detection based on 400 sample size images. The proposed model successfully 

identified hard tissue landmarks within the error range of 1.32±3.5mm and soft tissue 

landmarks with a mean success rate of 1.16±4mm and with a mean success rate of 75.2%. This 

model reduces the landmarking time from 5-7min by an orthodontist to 21 sec for 33 

landmarks. (41) 



Noothout. et al. (2019), Custom FCNs based on ResNet34, the proposed method can localize 

landmarks in 2D and 3D medical images of arbitrary size, acquired with three different imaging 

modalities and depicting different anatomical coverage. The method localizes multiple or 

single landmarks with high accuracy and speed, making it suitable for application in studies 

including many images or real-time localization. (42) 

Zhong. et al. (2019), used 2-stage (global and local), U-Net models, with 400 sample size 

images. The attention-guide and comprehensive exploitation strategy ensure that the searching 

scopes are smaller and data resolution is higher with minimum information redundancy. They 

achieved a state-of-the-art result of 86.74% accuracy on landmark detection in cephalometric 

radiography. (43)  

Park. et al. (2019), Comparative study on You-Only-Look-Once version 3 (YOLO V3) and 

Single Shot Multibox (SSD) using 1311 sample size images. YOLO v3 seems to be more 

promising as a fully automated landmark identification system for use in clinical practice with 

an accuracy of 80.4%. (44) 

Gilmour. et al. (2020), used Modified ResNet34 combined with a custom image pyramids 

approach (spatialized features) using 400 sample size images. Using this model, they got an 

accuracy of 88.32% in test 1 and 77.05% in test 2. (45) 

Kim. et al. (2020) They tried 2 Stage DNN using a stacked hourglass network model with 2500 

sample size images detected 23 landmarks achieved a landmark detection success rate of 82-

84%. (46) 

 

   

 

 

 

 

 

 

 



METHODOLOGY 

 

Materials: 

1. Dataset 1: includes 300 lateral cephalograms collected from 2015 ISBI Grand 

Challenge conducted by IEEE. 

2. Dataset 2: includes 300 lateral cephalograms collected from St Gregorios Dental 

College, Ernakulam, Kerala. 

3. Digital Cephalometric X-ray Machine- Orthophos XG 3D 

4. Dentsply Sirona Sidexis ver.4.0 software. 

5. Marked dataset containing 600 files with 19 landmarks annotations. 

6. Unmarked dataset containing 600 files 

7. Pytorch Framework for CNN building with Torch Vision and OpenCV using python 

language. 

8. Asus Rog laptop, 32GB ram, 8GB RTX 2070 Super Max-Q, Intel 10th Gen CPU 

 

Description of Datasets: 

The CNN needs a considerable amount of data to work efficiently; otherwise, there will be an 

over-fitting issue. The Data used in this study was provided in the 2015 ISBI Grand 

Challenges in Dental X-ray Image Analysis of IEEE International Symposium on Biomedical 

Imaging 2015 (website: http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge1/). This 

was combined with the dataset created from the St Gregorios Dental College itself. The 

challenge dataset contains 300 images, with a resolution of 1935 x 2400 pixels in TIFF 

format, each pixel’s size is 0.1 x 0.1 mm. The cephalograms were acquired with Soredex 

CRANEXr Excel Ceph machine (Tuusula, Finland) and Soredex SorCom software (3.1.5, 

version 2.0). The downloaded file contained 3 folders. The first folder had x-rays with 

landmarks already identified. The second folder had x-rays without having the landmarks. 

The third folder had the coordinates of the marked landmarks for every 300 images. 

The custom-created dataset containing 300 patient images between the ages of 6 and 60 years 

were collected with Orthophos XG 3D Digital X-ray machine and Dentsply Sirona Sidexis 

(version 4.0) software from the Department of Orthodontics, St Gregorios dental college 

(Kothamangalam, Kerala, India). Two Orthodontists manually annotated the collected 

http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge1/


images, and the coordinates were listed for every 19 landmarks in the same way as the Grand 

challenge dataset. 

Thus, a total of 600 images were taken for this study after exclusion criteria. 

 

 

Inclusion criteria 

• Digital lateral cephalograms of patients having Angle’s Class I, II, III skeletal pattern. 

 

Exclusion criteria 

• Digital lateral cephalograms of patients with a history of facial trauma 

• Digital lateral cephalograms of patients with Syndromes and or other craniofacial 

anomalies. 

• Digital lateral cephalograms of patients with gross asymmetry 

• Digital lateral cephalograms of patients undergone surgical corrections. 

• Digital lateral cephalograms of poor quality that does not allow manual tracing. 

 

Proposed method: 

As described above, the dataset collected contained six hundred X-ray images, and each image 

contained Nineteen landmarks. The dataset collected from the Grand challenge contained 300 

X-rays which 2 experienced doctors had manually annotated and, the coordinates are listed in 

tables for 19 landmarks. The Orthodontists with a clinical and academic experience of more 

than 10 years were selected to augment the database of the present study. They analysed the 

300 cephalograms collected from St Gregorios Dental College, and manually marked the 19 

Cephalometric landmarks listed in Figure 1. After obtaining the marked x-rays, the landmarks’ 

x,y coordinates were automatically extracted by the computer. Once the Dataset was created, 

the Cleaning of the dataset was done i.e., the dataset was analyzed for errors of different types 

and were removed. The mean error between the two Orthodontists was calculated by the RMSE 

score listed in Table 1 to analyze the inter-examiner reliability, and find the ground truth data 

for each landmark. After making sure that the dataset is clear without any error, the training of 

the model was done. 80 per cent of the dataset were used for training purposes and the 

remaining dataset was used for testing the model. During the training time, the images were 

studied by the model. After adequate training, the testing dataset is given to the model for 

identifying the landmarks. This method is a two-step method: 1) ROI extraction, 2) Landmark 

detection. The cropped patches were by registering the test image to training images for ROI 



extraction, with annotated landmarks. Later the pre-trained CNN models with the backbone of 

EfficientNetB7, a state-of-the-art CNN, were used to detect the landmarks in the extracted ROI 

patches. Once the model detected the landmarks, the RMSE score for each landmark is 

evaluated to obtain the amount of variation in detecting the landmark from the ground truth 

data, listed in Table 2. 

The final comparison of manual and automated models was done using the R2 score. 

Region of Interest Creation 

Due to the large size of the input image, it was decided to extract small ROI patches 

automatically. ROI patches that include landmarks were extracted. The entire image was 

cropped into areas around each landmark. To extract the ROI automatically, the registration to 

locate a course location of the landmark was used. Next, the ROI patches centred on the coarse 

location was extracted. Thus, the landmark location to be detected was included within the ROI 

patch. 

After registration, the landmark locations of the training images was copied to test images. The 

landmark location of the reference image was considered as the centre of the ROI patch to 

extract a 512 x 512 resolution patch image on the test image. The extracted images was treated 

as input to the trained CNN; thus, could detect the corresponding landmark within the patch 

image. 

Every person's head shape varies; therefore, randomly choosing one image from the training 

images as a reference image was insufficient. Therefore, the landmark to be detected was not 

included in the ROI. To avoid this situation, All the training images were titrated, which means 

registration were done 300 times for one test image (the total number of training images was 

300). Then, as the standard image, the training image was chosen with the minor square error 

with test images. This enabled to seek out the closest training sample to the test images. For 

computation, the trained and test images vary a lot. The shortest only took a couple of seconds 

for one registration, while the longest to do more than one minute. In short, the average time 

for registering one image to every training sample was around twenty minutes. 

 

CNN Model 



The Model program was written using Pytorch framework CNN building with Torch Vision 

and OpenCV using Python language. Convolutional Neural Networks (CNN) are commonly 

developed at a fixed resource budget and then scaled up for better accuracy if more resources 

are available. In CNNs, have more layers, have deeper networks, and if keeps on increasing 

the layers in our network, had to scale the depth of the Network. Thus, if needed to increase 

the accuracy, need to add more layers to create a robust architecture. Nevertheless, if keeps on 

increasing the layers and the saturation point is attained to some extent, the algorithm will not 

perform and will face a vanishing gradient problem. Later on, in further studies, have 

overcomes the vanishing gradient problem by inventing ResNets architecture widely studied 

in landmark detection. These ResNet’s uses Skip Connection which reduces the vanishing 

gradient problem. However, as these problems are resolved, the architecture layers keep 

increasing, leading to a need for more powerful computer and computation power. The 

processing becomes time-consuming for training and testing these models. E.g., ResNet is a 

type of CNN model that can be scaled up from ResNet-18 to ResNet-200 by using more layers. 

Since the start of CNN development, we have kept increasing the layers, which means we only 

increase the depth of the network. 

In this study, the EfficientNetB7 architecture is used as the backbone, which Google developed, 

and these models are used for computer vision applications. They can be effectively used to 

find features in ROI patches. The EfficientNetB7 architecture uses mobile inverted bottleneck 

convolution (MBConv) as a baseline network. This CNN can find valuable features 

automatically for different computer vision tasks. This model can perform scaling on depth, 

width and resolution. Like earlier said, the depth means increasing the number of layers in the 

Network. The width simply means increasing the number of channels or feature maps. The 

increase in the number of feature maps in a specific picture will increase the accuracy. 

Resolution Scaling means that if the algorithm is trained using a low-resolution image dataset, 

the model will capture less information, leading to less accuracy. Therefore, to get more 

information from the image, so it is mandatory to use a high-resolution image to learn more 

complex features by the algorithm. Since the high-resolution images are used, the architecture 

needs more depth scaling, i.e., a Deep learning neural network is required for processing 

complex pieces of information. To pursue better accuracy and efficiency, it is critical to balance 

all dimensions of networks, i.e., width, depth and resolution, during scaling; otherwise, if keep 

on increasing, can face the vanishing gradient problem. For the balancing stage, used a 

technique called Compound Scaling was used in the study.  



The compound scaling formula is f=α.βϕ.γϕ, where f is the network scaling factor, α is d: depth 

scaling factor, β is w: width scaling factor, γ is r: resolution scaling factor. Where α,β,γ are 

constants that a small grid search can determine to find out the coefficient value (ϕ). Based on 

these ϕ values, the remaining values are founded. The compound scaling suggests that the 

scaling of the network should be performed using a constant ratio in all the dimensions. 

First, a baseline neural network called Efficientnet-B0 is formed using Neural Architectural 

Search (NAS) using the machine learning technique. Once baseline network is created, further 

scaling of the network is done in terms of depth, width and resolution to generate a more 

significant model B7 to provide better accuracy. According to the studies, with a smaller 

number of parameters, the EfficientNets can provide better accuracy than the other currently 

available models. In particular, the EfficientNet-B7 achieves state-of-the-art 84.3% top-1 

accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best 

existing CNNs. In this study, used a fully connected layer to estimate landmark location as a 

regression problem. First of all, flatten all the features. Then, input one fully connected layer, 

which directly outputs the coordinate of the landmark in the patch. 

 

Evaluation of the Result: 

The output data are analysed using RMSE and R2 Score to detect the model’s accuracy and 

compare it with the manual annotation method respectively. The Root Mean Squared Error 

(RMSE) is a common metric for assessing the performance of machine learning models. It is 

often used to provide a metric that is related to the unit being measured. The study uses the 

RMSE score for comparing the results obtained in the manual annotation method and 

automated method. The results would give the error between the actual point and marked 

landmark. This way, rather than a percentage, helps the readers to understand the error better. 

Calculation of RMSE Score: 

For each landmark prediction, the difference between respected landmarks and the actual 

ground truth data is to be found and they have to square these values. After that, the mean of 

these squared values are found and the Square root of this mean gives the RMSE score. The 

output is a non-negative value, and it would be better if it is brought near zero. 



 

‘Ʃ’ represents sum, ‘yi’, the predicted value for the ith observation, ‘ẏ’ the observed value for 

the ith observation, and ‘N’ is the sample size. The score will give us an idea of the average 

distance between the ground truth data values and the predicted data values. The RMSE 

results are shown in pixel difference which will give a clear idea about how much deviation is 

present from the actual landmark point to the predicted landmark point. As the pixels 

difference decreases, the accuracy of the predicted landmark increase which can come up to 

zero value. 

 

 

Calculation of R2 Score: 

R-squared (R2) is a statistical measure representing the proportion of the difference or 

variance for a dependent variable that an independent variable or variables can explain. It 

shows how well the dataset will fit the model. For the calculation of R squared, the 

correlation coefficient is obtained and the square is the result. 

 

Where ‘r’ represents the Correlation coefficient, n is the number in a given dataset, ‘x’ the 

first variable and ‘y’ the second variable. The square root of the result gives an R2 score.  

R2 Score shows how much information can be gathered from the images to accurately predict 

the landmark. The score can be ranged from values -1 to 1. As the values are closer to 1, we 

can say the dataset is best fitted for the model for predicting the landmarks and vice versa. 

 

 

 

 



 

Figure 1. Landmarks selected for detection 

 

 

Figure 2. Trained 19 models with the same architecture but different weights  



                  

Figure 3(a) Example of our training image, yellow boxes are cropped training images, 3(b) 

The cropped 512x512 patches; Shows how we cropped ROI patches for each landmark: Red 

dot is the target landmark, the yellow boxes are 512x512 ROI patches. 

 

 

Figure 4. The architecture of the EfficientNetB7 shows the conventional layers present in the 

network.  

 

 

 

 

 



RESULTS 

This study trains and validates EfficientNetB7 on the public benchmark dataset from the 

cephalometric landmark detection challenges at IEEE ISBI 2014 and 2015 combined with a 

custom dataset created later. There are 600 cephalometric X-rays images collected from 600 

patients. For each image, 19 landmarks are manually marked by two experienced 

orthodontists, and their mean deviation between two doctors is evaluated in RMSE Score 

listed in Table 1. The dataset contains 520 training data and 80 testing data. The resolution of 

an image was 1935 x 2400 pixels. The detection accuracy to evaluate the performance, 

EfficientNetB7 was used. If the distance between a detected landmark and its ground truth 

becomes less, this landmark can be classified as accurate. In table 1, points like Orbitale, 

porion, gonion, articulare, Point A and point B shows a moderate difference between the two 

orthodontists. At the same time, some points show a high degree of acceptance between the 

two. It is noted that the landmark, soft tissue pogonion, shows a significant difference 

between the 2 orthodontists. 

After training the proposed model with the dataset of 520 images, the learned model was 

tested with 80 images. The red landmark is the predicted results of the proposed 

efficientNetB7. For all 19 landmarks, it is clear that the predicted results highly agree with 

the ground truths, and it demonstrated that EfficientNet could obtain better results than 

current architectures. The Mean Error calculated on CNN automated landmarking model is 

obtained from the established ground truth data listed in Table 2. The results were obtained 

using RMSE score. It will provide information about deviation of the actual landmarks from 

the predicted landmark in pixels. The table shows that the points marked by the model have 

acceptable accuracy with the manual annotation method. For points like pogonion, gnathion, 

menton, upper incisor point, lower incisor point; the manual method was found to have better 

predictability. 

As for detecting the accuracy of the test data, compared EfficientNetB7 with the manual 

annotation method. To prove the model’s effectiveness, the results in Test data are shown in 

Table 3. As noted, EfficientNetB7 obtains detection accuracies similar to the manual 

annotation method in the R2 Score. The landmarks like, Porion, articulare, soft tissue 

pogonion, the model outperformed the human annotation method and provides a consistent 

better result. As the same time, the points like Point A, pogonion, gnathion and menton, the 

manual methods show more accurate results. 



Table 1: Mean Deviation calculated on Observers Manual landmarking done by experienced 

Orthodontists 

Anatomical Landmarks RMSE Score- Mean Error pixel 

Sella 8.158992995 

Nasion 13.12710301 

Orbitale 18.89700153 

Porion 20.56398551 

Pogonion 7.834805 

Menton 8.064738 

Gnathion 6.3035045 

Gonion 18.8819135 

Incisal point Upper 4.5414755 

Incisal point Lower 5.1604265 

Upper lip 17.1833495 

Lower lip 13.8348595 

Subnasale 10.2873305 

PNS 9.973005 

ANS 13.0483715 

Articulare 18.3700165 

Soft tissue pogonion 42.107541 

Point A 20.8449435 

Point B 18.9083315 

 

 

Table 2: Error calculated on CNN automated landmarking from the established ground truth. 

Anatomical Landmarks 

Detection Rate 
CNN Model – Mean Error 

(RMSE) 

Sella 99.6 8.775 

Nasion 95.6 14.16 

Orbitale 99.6 14.22 

Porion 92.3 15.975 

Pogonion 93.5 9.36 

Menton 95.5 10.32 

Gnathion 93.3 11.31 

Gonion 90.7 15.48 

Incisal point Upper incisor 96.7 8.7 

Incisal point Lower incisor 94.6 8.01 

Upper lip 95.5 14.31 

Lower lip 99.9 10.17 

Subnasale 96.3 9.375 

PNS 97.6 9.315 

ANS 94.8 13.455 

Articulare 91.5 15.165 

Soft tissue pogonion 93.8 13.08 

Point A 92.9 14.97 

Point B 95.8 11.91 



Table 3: Performance comparison between manual and automated landmark identification 

based on R2-Score. 

Anatomical 

Landmarks 

 

Manual Landmark 

Accuracy 

(R2-Score) 

Automated landmark 

Accuracy 

(R2-Score) 

Sella 0.944790597 0.95381 
Nasion 0.928399311 0.90111 
Orbitale 0.772685175 0.86632 
Porion 0.442685418 0.78339 

Pogonion 0.985662897 0.95729 
Menton 0.987690519 0.94617 

Gnathion 0.991861202 0.92341 
Gonion 0.840970697 0.90562 

Incisal point Upper 0.993262713 0.99738 
Incisal point Lower 0.991278187 0.98637 

Upper lip 0.914773372 0.98565 
Lower lip 0.947982437 0.94655 
Subnasale 0.963626204 0.95022 

PNS 0.917825451 0.90707 
ANS 0.921108837 0.93311 

Articulare 0.655885858 0.75922 
Soft tissue Pogonion 0.621971525 0.807231 

Point A 0.834820777 0.80375 
Point B 0.898344184 0.96541 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. RMSE Score for 19 landmarks. The blue line shows the mean error that occurred during the 

manual annotation method; the red line shows the mean error that occurred during Automated 

detection of landmarks. 

 

Figure 6. R2 Score for Manual and Automated landmark annotation method, the blue bar shows the 

performance of manual annotation, red bar shows the performance of the automated model. 

 

 

 



DISCUSSION 

 

Unlike other dental radiographs, Cephalograms are not limited to diagnose qualitatively. 

Within the relation to the reference plane (considered as stable structures), angular and linear 

measurements are also assessed quantitatively. The reference points may be a skeletal 

landmark, a virtual point or can be a constructed point like gonion (crossing point between two 

lines)(47). For the precise diagnosis of a condition, the accurate marking of the landmarks is 

important(48). Although Graber way back in 1956, warned of definite limitations of 

cephalometrics, many in this field still swear by it and its utility in orthodontic diagnostic 

treatment planning is widely accepted.  

Landmark detection is the most vulnerable area in Cephalometrics. In many situations, the very 

definition of the landmark has been criticized, leading to location errors and reproducibility. 

Orbitale, for example, is defined as “the lowest point of the orbital rim”. Sir Martin criticized 

this definition stating that it does not serve as a landmark since it is not well defined and is 

unreliable since it is entirely an aesthetic judgement(49). There is some inappropriateness in 

landmark detection. Each landmark has its characteristic distribution of errors too. Even when 

the same head film is assessed, errors in landmark identification occur and that to an extend 

cannot be ignored. With the lack of clarity in landmark definition and identification, the actual 

problem arises when these same landmarks are used to construct planes and angles. A most 

common example would be the angle formed between the long axis of the mandibular incisor 

and the mandibular plane. The apex of the lower central incisor is the most difficult point be to 

accurately located. Likewise, Point A is also very hard to identify and locate. 

In spite of the advanced technology in this era, which includes innovations of imaging systems 

and software, the tools used in diagnosis and treatment planning have not experienced similar 

advances during the past decades. For instance, most clinicians use Cephalometrics for 

orthodontic diagnosis and treatment planning. But orthodontists were hesitant to do the 

cephalometric analysis, even after getting a lateral cephalogram because of the tedious work 

and time to be spend to do so. Several systematic reviews and prospective studies have argued 

that cephalograms are not routinely needed for orthodontic treatment and have no significant 

impact on treatment planning decisions. These studies also stated that lateral cephalograms are 

time-consuming and are taken for other reasons, such as medico-legal issues, for academic 

purposes, or due to lack of experience of practitioners (50–52). There is an interesting scenario 



that has developed worldwide within the orthodontic and craniofacial fields within the last 10 

years, wherein the difficulties of properly using digital data and its associated time 

requirements, with special respect to digital imaging, are somehow demotivating users to 

access real measurements and cephalograms and to fail to compare superimpositions at 

different time points during treatment. This unfortunate practise leads to imprecise diagnostics 

and treatment plans that are not optimized. Using cephalometric imaging software (such as 

Dolphin Imaging, QuickCeph, etc), an experienced clinician spends an average of 10-15 

minutes to place landmarks manually, which makes the procedure time-consuming and 

subjects to errors (5,53). 

The rapid development of artificial intelligence (AI) in recent years has penetrated many 

aspects of daily life, including the analysis of extensively available datasets. The accumulation 

of data in many formats by search engines such as Google and social media (Twitter, Facebook, 

and Instagram) has great potential for enhancement and improvement of all aspects of our lives. 

With orthodontic diagnostic and treatment planning, this AI technology could deliver not only 

an easy, practical, and precise tool for the practising clinician, but also significantly improves 

the amount of available labelled data. Despite of the readily available studies demonstrating 

the different processes to auto-detect craniofacial landmarks, most clinicians use approaches 

based on image-processing techniques where the image of cephalometric radiographs require 

intense human preparation, such as re-scaling, calibration, and labelling. Calibration and other 

image preparations are time-consuming and, if not done properly, often generate landmark 

outliners (23,54,55) as they strongly rely on the quantity and size of the cephalometric images. 

Many other studies propose different novel frameworks for landmark detection in 

cephalometric radiographs and demonstrate results with an accuracy of 72 per cent but again, 

these are not fully automated procedures (6,56). Current advances in this technology have, in 

turn, provided hardware and software development that is sufficiently robust to support the 

large computational requirements of complex AI algorithms and their application to machine 

learning. Applications of a variety of deep learning architectures, such as convolutional deep 

neural networks, deep belief networks, and recurrent neural networks, to the creation of 

algorithms in important fields such as natural language processing, computer vision, speech 

recognition, and bioinformatics have resulted in efficient and accurate automation of many 

pragmatic tasks (57–59). However, the developed methods are unable to compete with manual 

landmark identification. In recent years, the Institute of Electrical and Electronics Engineers 

(IEEE) and the International Symposium on Biomedical Imaging (ISBI) had organised Grand 



Challenges were organized on this topic to encourage the development of better algorithms. 

The results were described as providing a benchmark for any future development (4). 

The study was formulated to investigate whether AI might be a viable option for the repetitive 

and arduous task of identifying multiple cephalometric landmarks for use in clinical 

orthodontic practice. The null hypothesis that there will be no difference between the manual 

and automated methods could not be rejected. The mean error between the automated and 

manual did not exceed 0.9mm. In all landmarks, the Model demonstrated accurate 

identification as an orthodontist. All those mean differences showing less than 2mm would not 

seem to be a clinically significant error. However, since the computers always detected 

identical positions, the reproducibility by the model upon repeated detection tasks was better 

than that associated with the human counterparts. 

Computer vision, a part of AI, that enables machines to perceive the world similar to human 

beings, and use the knowledge for image recognition, analysis, and classification, has been 

constructed and tremendously improved with time, mostly over one particular algorithm – a 

Convolutional Neural Network. A Convolutional Neural Network (CNN) – is a deep learning 

algorithm that can take an input image, assign importance to various aspects/objects in the 

image and differentiate one from the other. Among the machine learning methods, deep-

learning methods have demonstrated superiority in automatically recognizing anatomical 

landmarks on diagnostic images. Deep learning means that CNN can learn different 

characteristics of the image, or, in other words, can be trained to understand the sophistication 

of the image better than traditional classification algorithms. Studies on related topics in 

various fields have also gained more popularity. Although three-dimensional images have 

gained popularity these days (60–64), two-dimensional cephalometric analysis is still a vital 

tool in orthodontic diagnosis and treatment planning since it provides information regarding a 

patient’s skeletal and soft tissue condition. Currently, computer-assisted cephalometric 

analysis eliminates human-induced mechanical errors. Fully automated cephalometric analysis 

has been long attempted to reduce the time required to obtain a cephalometric analysis, Also 

these long attempts to improve the accuracy of landmark identification, have reduced the errors 

caused by a clinician subjectively. The current studies detected less than 20 landmarks and the 

accuracy results were not satisfactory for use in clinical orthodontic practice. For example, in 

2009, 10 landmarks on 41 digital images were identified. (65) In 2013, 16 landmarks were 

identified on 40 cephalometric radiographs, and the mean error from automatically identified 

landmarks were 2.59mm. (66) The accuracy of those automated methods were not as good as 



those associated with manual identification. In addition, cephalometric landmarks need not be 

limited to simply obtaining patients skeletal characteristics but could also be applied to plan 

treatment and to predict treatment outcomes, including soft tissue changes. For those purposes, 

hundreds of variables of anatomical landmarks, are needed. (67–69) 

In the present study, the manual and automated models were compared to find whether the 

automated model is able to attain a landmark detection accuracy as same as humans. For that, 

the study was conducted using 600 raw X-ray images which were randomly collected from an 

age group of 6-60 years. The 300 images were collected from Open-sourced dataset from the 

internet and the remaining images were collected and the dataset was made indegenously and 

made publicly available for further studies. These 300 lateral cephalogram images that are 

custom created were manually annotated by two Orthodontists who had a clinical and academic 

experience of over 10 years. These 600 images were randomly mixed for increasing the 

complexity of the detection of landmarks and were categorised into two sections: 1) Training 

(520 X-rays), 2) testing image (80 images) datasets. The training images were used to build an 

architectural model from a base model called EfficientNetB7 for detecting the landmarks. The 

EfficientNetB7 architecture was found by Google which was far more superior than other 

currently available architectures for computer vision applications. It has the advantage of faster 

processing with less amount of data over the other currently available superior models. So, 

these EfficientNetB7 models are a suitable opponent for the other methods which used 

automated landmark detection. Once the model is made, the efficiency of this model was 

analysed by testing the remaining dataset. The result was obtained in pixels. The mean 

detection score for each of the 19 landmarks was formed for the manual annotation method and 

automated model using RMSE Score. By comparing the testing dataset result with the manually 

annotated landmarks, the accuracy of detecting the landmarks were evaluated and compared. 

For comparing the result, the R2 score is calculated, which shows how much variation is 

present for detecting a landmark by the model. In this way, The accuracy of the model can be 

assessed better 

The learning and testing data included images from various malocclusion patients in the present 

study. From the first formulation of the current study, the selection of these mixed images were 

intended to test the model’s performance in a more complex condition, rather than identifying 

landmarks on images from good-looking subjects.  



For registration, since people’s heads vary in shape, even though the closet image to the training 

data was selected as the reference image for each test image, there were still missed situations. 

This means that after the registration, the patch we created for the test does not include the 

ground-truth landmark. For the ISBI dataset, there is only one missed patch, and the rate is 

about 0.0002. Overall, it has little impact on the results. For Testset2 of the ISBI Grand 

Challenge, it is seen that Landmark 3, Landmark 6, Landmark 13 and Landmark 16 have 

relatively low accuracy. However, the process works fine on Test1. After visualizing the testing 

result, it was clear that the anatomy of those failed cases is very different from the successfully 

detected ones.  

In general, the pattern of differences between AI and orthodontists demonstrated that AI acts 

like an orthodontist. For example, when doctors had difficulty in identifying landmarks on poor 

quality images, so did AI. This might be the reason why image factors did not meaningfully 

affect the accuracy of AI in finding landmarks. In those subjects with fixed orthodontic 

appliances, massive prostheses, and surgical bone plates, it was initially anticipated that there 

would be difficulties in identifying the landmarks because of the multiple metallic artefacts. 

However, metal artefacts did not appear to have a clinically significant impact on identifying 

landmarks either. 

As a limitation of the present study, the way AI learned during the training session and 

identified landmarks later in the test step are not explainable without describing computer 

science jargon. Although some technical details were necessary, this present study intended to 

focus on showcasing the results from AI. Upon repeated trials, AI always found identical 

positions. How much learning data might be sufficient enough to teach AI is currently 

unknown. Furthermore, it could be conjectured that the number of target landmarks might also 

be contributing factor in deciding a sufficient number of learning data. A study to elucidate the 

sufficient quantity of data for deep-learning of AI might be necessary for the future. 

From the clinical perspective, however, AI would never replace trained specialists in 

orthodontics, nor might AI intend to replace a comprehensive orthodontic training program. 

Rather it could supplement, augment, and amplify diagnostic performance by objectively 

evaluating each patient seeking orthodontic treatment. The AI proposed in the present study 

can be compatible with the current clinical environment and would retain its validity under the 

constant supervision of experts in orthodontics. 

 



LIMITATIONS OF THE RESEARCH 

 

The deep learning models in CNN have some shortcomings like memory leakage, overfitting, 

which need a considerable amount of data set to improve the accuracy. Vanishing gradient 

problem due to overfilling of the data beyond a threshold level of the model, variation in the 

lateral cephalometric images leading to poor accuracy of the landmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 CONCLUSION 

 

The study proposed an approach to automatically predict landmark location and used a deep 

learning method with very small training data, with 600 X-ray training images. The results 

outperformed other benchmarks’ results of previous models, which proves that the proposed 

method is effective for cephalometric landmark detection. The proposed method could be used 

for landmark detection in clinical practice under the supervision of doctors. 

For future work, study can be used for developing a Graphical User Interface (GUI) for doctors 

to use. The system offers either automatic or semi-automatic landmark detection. In the 

automatic mode, the system will automatically extract an ROI (based on registration) and select 

a proper model for each landmark. In the semi-automatic mode, the doctor needs to give a 

bounding box extract ROI manually and select a corresponding model for each landmark 

detection, which can reduce computational time. Since used simple registration in this study 

and it took a long time to register one test image with all the training images, around twenty 

minutes as we mentioned before. Under such a case, aims to design a better method that reduces 

the registration time in the testing phase, to make the automatic detection more efficient. For 

example, maybe we will also utilize the deep learning method, either to do registration or just 

simply to regress a coarse landmark region, to replace the rigid registration we used in this 

paper. The Dataset which was made in our institution made available as Open source, helps the 

future studies to utilize this Dataset. Moreover, because Model detected all the landmarks in 

patch images, and did not take global-context information (i.e., the relationship among all the 

landmarks) into consideration. In future work, need to utilize this global-context information 

to check whether this model can achieve better performance. For example, maybe will try to 

change the network architecture to allow the network to utilize the whole image’s features to 

better and faster locate the coarse locations of landmarks. 
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ANNEXURES 

 

 

DESCRIPTION OF TERMS 

 
 

1. Artificial Intelligence: According to John McCarthy in 2004, “It is the science and 

engineering of making intelligent machines, especially intelligent computer programs. 

It is related to the similar task of using computers to understand human intelligence, 

but AI does not have to confine itself to biologically observable methods”. 

 

2. Machine Learning: Machine learning may be a branch of Artificial Intelligence (AI) 

and computing that focuses on utilizing knowledge and algorithms to imitate how 

humans learn, gradually improving accuracy. 

 

3. Deep Learning: Deep learning may be a subset of machine learning, a neural network 

with three or more layers. These neural networks plan to simulate the behaviour of the 

human brain—albeit far away from matching its ability—allowing it to “learn” from 

large amounts of knowledge. 

 

4. Convolutional Neural Network (CNN): CNN is a type of deep learning model for 

processing data that has a grid pattern, such as images, which is inspired by the 

organization of the animal visual cortex and designed to automatically and adaptively 

learn spatial hierarchies of features, from low- to high-level patterns. 

 

5. Dataset: In machine learning, it is, quite simply, a set of knowledge pieces that a 

computer will treat as one unit for analytic and prediction purposes. So the 

info collected should be made uniform and understandable for a machine that does 

not equivalently see data as humans do. 

 

6. Model: A machine learning model is a file that has to be trained to acknowledge 

certain sorts of patterns. The Model is trained over a set of knowledge, providing an 

algorithm to reason over and learn from those data. Once the model has been trained, 



It can be used to reason over data that it has not seen before and make predictions 

about those data. 

 

7. Back-propagation: It is the essence of neural net training. It is the practice of fine-

tuning the weights of a neural net based on the error rate (i.e., loss) obtained in the 

previous epoch (i.e., iteration). Proper tuning of the weights ensures lower errors in 

results. 

8. Euclidean distance: Distance between two points in either the plane or 3-dimensional 

space measures the length of a segment connecting the two points. It is the most 

obvious way of representing the distance between two points. The Pythagorean 

Theorem can be used to calculate the distance between two points, as shown in the 

figure below. If the points (x1,y1)(x1,y1) and (x2,y2)(x2,y2) are in 2-dimensional 

space, then the Euclidean distance between them is √(x2−x1)2+(y2−y1)2. 

 

9. Root Mean Square Error (RMSE): Root Mean Squared Error is the square root of 

Mean Squared error. It measures the standard deviation of residuals. Mean Squared 

Error represents the average squared difference between the original and predicted 

values in the data set. It measures the variance of the residuals. 

 

10. R2 Score: This is a fundamental metric that is used to evaluate the performance of a 

regression-based machine learning model. It is pronounced as R squared and is also 

known as the coefficient of determination. It works by measuring the amount of 

variance in the predictions explained by the dataset. Simply put, it is the difference 

between the samples in the dataset and the predictions made by the model. 
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